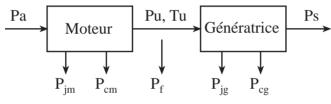

Cours: Moteur à courant continu Niveau : T, TS TP ✓

Titre : mesure du rendement Durée: ^{2h} manipulation Cours

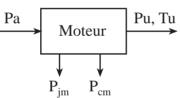
Objectifs : Mesurer le rendement d'un moteur par la méthode des pertes séparées, c'est-à-dire que l'on va évaluer toutes les pertes du montage.

Ce TP permet également de découvrir la façon de déduire des grandeurs à partir de plusieurs essais d'un système électrotechnique.

Précaution d'emploi:


pour les deux machines, le courant doit être limité à 3,5A et la tension à 12V. L'ampèremètre sur la génératrice sert uniquement à vérifier que l'on ne dépasse pas le courant limite.

Remarques:


- la génératrice fait office de charge pour le moteur ;
- ces machines sont à aimants permanents, donc à flux constants.

Principe expérimental:

Bilan énergétique du montage

Bilan énergétique du moteur

Essai à vide : mesure de $P_{cm} + P_{cg}$ Ces deux grandeurs ne varient presque pas en

fonction de la charge. On peut donc faire la mesure à vide et utiliser le

résultat dans les calculs en charge. On ne peut pas dissocier P_{cm} et P_{cg} car le moteur est couplé à la génératrice.

Etant donné qu'il s'agit des mêmes machines, nous allons supposer que $P_{cm} = P_{cg}$.

Remarque : la résistance d'induit rm est évaluée avec les essais en charge grâce à la modélisation avec Excel en utilisant le modèle équivalent de l'induit.

$$Ps = 0$$
 et $P_{jg} = 0$ car $Is = 0$

$$Pa = P_{jm} + P_{cm} + P_{cg}$$

$$P_{cm} = P_{cg} = \frac{1}{2}(Ue.Ie - r_m Ie^2)$$

$$Ue = E + r_m . Ie$$

P_f représente toutes les pertes autres que celles des machines: accouplement, roulements, courroie, ...

Formulaire

Pa=Ue.Ie

$$\sum_{pertes=Pa-Pu}$$

$$P_{im} = r_m I e^2$$

$$Pu = Pa - P_{jm} - P_{cm}$$

$$Tu = Fu - F_{jm} - F_{cm}$$
couple de perte
$$T_P = \frac{P_{cm}}{\Omega}$$

$$T_U = \frac{P_U}{\Omega}$$
 $\eta_{moteur} = \frac{Pu}{P_{cd}}$

rappel
$$P_{cm} = P_{m\acute{e}ca} + P_{fer}$$

Essais en charge : mesure de Pu, Tu et η .

Le premier essai nous a permis de connaître toutes les pertes du montage.

Les mesures de Pa, Ue Ie et n nous permettent maintenant de déduire toutes les caractéristiques du moteur.

Ces mesures seront faites à vitesse constante pour différentes valeurs de la vitesse.

Matériel: - 1 maquette Pierron - 1 fréquencemètre

- 3 multimètres

de machines cc -1 alim 0-12V, 4A

continue

- 1 rhéostat 10 5,7A

© Claude Divoux, 1999

page 1/3

Cours : Moteur à courant continu Niveau : T, TS TP ✓

Titre : mesure du rendement Durée : 4h Cours

Objectifs : Mesurer le rendement d'un moteur par la méthode des pertes séparées, c'est-à-dire que l'on va évaluer toutes les pertes

du montage. Ce TP permet également de découvrir la fa

Ce TP permet également de découvrir la façon de déduire des grandeurs à partir de plusieurs essais d'un système

électrotechnique.

Manipulations:

Notez votre numéro de maquette au cas où il faudrait reprendre des mesures.

Mesurer la résistance d'induit du moteur (r_m) par la méthode voltampermétrique.

Essai à vide : mesure de P_{cm}

Le circuit de la génératrice est ouvert.

Relever le courant Ie et la vitesse n en fonction de la tension Ue.

n (tr/s)	Ue (V)	$\operatorname{Ie}_{0}\left(A\right)$	P _{cm}	(W)	T_{pm}	(mNm)	Е	(V)	Ω (rad.s ⁻¹)			
valeu	rs mes	urées	v a	l e	ı r	s c	a l	lcı	ı l	é	e s	

Essais en charge 1 : mesures à vitesse constante

Les mesures doivent être faites à vitesse constante. Augmenter progressivement la charge (rhéostat) et ajuster la tension pour maintenir la vitesse constante. Se référer au mode opératoire du TP sur les caractéristiques du moteur à courant continu.

Pour les vitesses de 80, 100, 120 et 140 trs/s, réaliser le tableau ci dessous (faire au minimum 4 mesures par vitesse, en respectant les conditions limites de courant des deux machines.). Faire plusieurs essais si nécessaire.

Essais en charge 2 : mesures à tension constante

A chaque modification de la charge (le rhéostat), réajuster la tension pour la garder constante. Faire les mesures à Ue = 6, 8 et 10 V. Faire plusieurs essais si nécessaire.

Ue = (V)	Ie (A)	n (tr/s)	Pa (W))	Pu (W)		Tu (mNm)			Ω (rad.s ⁻¹)			$\eta_{\it moteur}$			
			V	a	ı	e	u	r	S	c	a	c	u	1	é	e	S

© Claude Divoux, 1999 page 2/3

Niveau : T, TS TP Moteur à courant continu Cours:

Titre mesure du rendement. Durée : 4h Cours

Objectifs: Mesurer le rendement d'un moteur par la méthode des pertes séparées, c'est-à-dire que l'on va évaluer toutes les pertes du montage.

> Ce TP permet également de découvrir la façon de déduire des grandeurs à partir de plusieurs essais d'un système

électrotechnique.

Remarque:

La modélisation des droites nécessite l'utilisation d'un tableur ou d'un programme adapté.

Préparatifs:

Faire l'inventaire des formules qui seront utilisées pour remplir les tableaux ci-dessous.

Exploitation:

Résistance d'induit

Expliquer le principe de la méthode voltampermétrique pour mesurer les résistances d'induit.

Rappeler le schéma équivalent de l'induit d'un moteur à courant continu et la loi des mailles s'y rattachant.

Pour chaque essais en charge à vitesse constante, tracer et modéliser la caractéristisque Ue=f(Ie). En déduire une valeur de la résistance d'induit.

Comparer les deux méthodes.

Essai à vide : mesure de P_{cm}

Quelle valeur P_{cm} ou T_{pm} semble constante qu'elle que soit la vitesse ? En déduire une valeur moyenne qui servira dans les calculs des essais suivants.

Tracer la caractéristique à vide $E=K.\Omega$ (Ω vitesse en rad/s) et en déduire la constante de proportionalité K. Quelle est sa dimension?

Essais en charge 1 : mesures à vitesse constante

Tracer sur un même graphe la caractéristique T_{em}=K'.I pour les trois essais. Modéliser les droites et en déduire une valeur de la constante de proportionnalité K'.

Comparer K et K'.

Essais en charge 2 : mesure à tension constante

Tracer sur un même graphe la caractéristique mécanique Tu=f(n) pour les trois essais. Que peut-on dire sur l'influence de la charge sur la vitesse de rotation ?

Bilan:

En observant les résulats des essais en charge, proposer un couple (Ue, Tu) pour lequel le rendemnt est le meilleur.

Proposition:

Refaire des essais en estimant les incertitudes sur les mesures. En déduire celles sur les valeurs calculées. Discuter les résulats.

page 3/3 © Claude Divoux, 1999